Mixed Stops and the ATLAS on-Z Excess

(1508.02419)

Jack H Collins, Jeff Asaf Dror, Marco Farina

The ATLAS Excess

1503.03290

arXiv:1503.03290

"Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector"

Cuts:

$$M_{1L} \simeq M_z$$
 (8) $< \frac{Mu}{Gev} < 101$)
Njets > 2

ETNES > 225 GeV

HT >600 (HT=Zlpr:1: signal jets)
Adjet, ETMISS >0.4

Bg =
$$10.6\pm3.2$$
 events
Obs = 29 events
Significance = 3.0 (local)

The ATLAS Excess

1503.03290

The CMS Search

1502.06031

Cut Comparison

	Niet	ETMISS/G	ev HT/GeV
ATLAS	≥2	≥225	≥600
ATLAS	≥2,3	100-200, 200-300 2300	

Njet 22	low	mid	high
$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	100-200	200-300	>300
DY background	336 ± 89	28.6 ± 8.6	7.7 ± 3.6
FS background	868 ± 57	45.9 ± 7.3	5.1 ± 2.3
Total background	1204 ± 106	74.5 ± 11.3	12.8 ± 4.3
Data	1187	65	7

Njet 23	low	mid	high
$E_{\rm T}^{\rm miss}$ (GeV)	100-200	200–300	>300
DY background	124 ± 33	12.7 ± 3.8	3.2 ± 1.8
FS background	354 ± 28	26.5 ± 5.4	2.0 ± 1.4
Total background	478 ± 43	39.2 ± 6.6	5.3 ± 2.3
Data	490	35	6

The CMS Search

1502.06031

Cut Comparison

	njet	ETMISS/C	er Hyger
ATLAS	≥2	≥225	≥600
CMS	≥2,3	100-200, 200-300 2300	

Njet 22	low	mid	high
$E_{\rm T}^{\rm miss}$ (GeV)	100-200	200–300	>300
DY background	336 ± 89	28.6 ± 8.6	7.7 ± 3.6
FS background	868 ± 57	45.9 ± 7.3	5.1 ± 2.3
Total background	1204 ± 106	74.5 ± 11.3	12.8 ± 4.3
Data	1187	65	7

Njet 23	low	mid	high
E _T ^{miss} (GeV)	100-200	200–300	>300
DY background	124 ± 33	12.7 ± 3.8	3.2 ± 1.8
FS background	354 ± 28	26.5 ± 5.4	2.0 ± 1.4
Total background	478 ± 43	39.2 ± 6.6	5.3 ± 2.3
Data	490	35	6

Want 7-20 events in ATLAS region without falling foul of CMS search bins.

They also have different control regions for background estimation. Could there be background contamination?

Explanations

Generalized Gauge Mediation (GGM)

1503.04184 1504.02752

NMSSM (with singlino LSP)

1504.02244 1504.07869

MSSM

1506.07161

NMSSM with Goldstino LSP

1506.08803

MSSM with RH sbottom

1504.04390

(N)MSSM with light squarks

1506.05799 1508.07452 1507.08471

Light Stops?

Flavour Conserving

Flavour Violating

•
$$\widetilde{t}_2 \rightarrow \widetilde{t}_1 Z$$
 decay expected with • $\widetilde{t}_1 \rightarrow t\widetilde{\chi}$
Large $\widetilde{t}_n - \widetilde{t}_R$ Mixing $\widetilde{t}_1 \rightarrow b\widetilde{\chi}^o$
from A-terms $\widetilde{t}_1 \rightarrow f\widetilde{f}'b\widetilde{\chi}^o$

•
$$\widetilde{\xi}_1 \rightarrow t\widetilde{\chi}$$

 $\widetilde{\xi}_1 \rightarrow t\widetilde{\chi}$
 $\widetilde{\xi}_1 \rightarrow t\widetilde{\chi}$

Light Stop Searches: Flavour Conserving

Light Squark Searches (or flavour violating stop)

Simplified Model Details

Large
$$tan/\delta$$
, Higgs decoupling limit Free parameters:
$$\begin{aligned} &\text{M$_{\tilde{t}_1}$, m$_{\tilde{t}_2}$, } &\text{Cos}\,\Theta_{\tilde{t}_1}^* \text{ m$_{\tilde{t}_2}$, } &\text{Sets} &\text{Mb, } &\text{RR}\left(\textbf{t}_2 \rightarrow \textbf{t}, \textbf{Z}\right) \\ & \left(\frac{\tilde{t}_1}{\tilde{t}_2}\right) = \begin{pmatrix} c_{\theta_{\tilde{t}}} & -s_{\theta_{\tilde{t}}}^* \\ s_{\theta_{\tilde{t}}} & c_{\theta_{\tilde{t}}} \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix} \\ & m_{\tilde{b}_1}^2 = m_{\tilde{t}_1}^2 c_{\theta_{\tilde{t}}}^2 + m_{\tilde{t}_2}^2 s_{\theta_{\tilde{t}}}^2 - m_t^2 - \Delta_{\tilde{u}_L} + \Delta_{\tilde{d}_L}. \end{aligned}$$

Model Details

Large tanb, Higgs decoupling limit
$$\begin{aligned} &\text{Free parameters:} \\ &M_{\tilde{t}_1}, \, m_{\tilde{t}_L}, \, \left(\cos \Theta_{\tilde{t}}^* \right) \, m_{\tilde{\chi}_1^*} \quad \text{Sets} \quad M_b, \, \& \, \, \text{BR} \left(\mathsf{t}_2 \! - \! \mathsf{t}_c \mathsf{Z} \right) \\ &\left(\tilde{t}_1 \atop \tilde{t}_2 \right) = \begin{pmatrix} c_{\theta_{\tilde{t}}} & -s_{\theta_{\tilde{t}}}^* \\ s_{\theta_{\tilde{t}}} & c_{\theta_{\tilde{t}}} \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix} \\ &m_{\tilde{b}_1}^2 = m_{\tilde{t}_1}^2 \, c_{\theta_{\tilde{t}}}^2 + m_{\tilde{t}_2}^2 \, s_{\theta_{\tilde{t}}}^2 - m_t^2 - \Delta_{\tilde{u}_L} + \Delta_{\tilde{d}_L}. \end{aligned}$$

Results: Flavour Violating, compressed t1–t2

Results

Results

Jet-Z Balance (JZB) and Background Contamination

Summary and Ideas

- 3σ ATLAS excess in dileptons on Z peak, jets + MET, first sign of SUSY?
- Possibly by light stops with $(m_{t2}, m_{t1}, m_{\chi}) \sim (370, 270, 250)$ GeV, with flavour-violating t1 \rightarrow ux or cx.
- Scenarios with flavour conserving decays or a heavier t₂ are also possible, but disfavoured.
- Possibility of background contamination using JZB. JZB could also be a useful discriminator for new physics explanations.
- If the excess persists, it would be interesting to explore mixed flavour-conserving and flavour-violating decays. This could relax the mass limits by ~50 GeV (1408.4662), which would have a big impact on signal event rates.
- There are also ~2 σ excesses in a search for Z \rightarrow II, jets + MET with at least one b-jet (SUS-13-008), and in same sign dileptons, jet and MET with b-jets (1507.01601). All of these are possible signatures of a SUSY spectrum containing light stops. Maybe we can explain all of them at once?
- Some BMSSM models predict also large left-right mixing in the sbottom sector. Maybe $b_2 \rightarrow b_1 Z$ can contribute to the excess too.

Auxilliary Slide 1: Split BRs

Auxilliary Slide 2: Sbottom limits

Auxilliary Slide 2: ISR uncertainties

